29 research outputs found

    Improved bounds on sample size for implicit matrix trace estimators

    Full text link
    This article is concerned with Monte-Carlo methods for the estimation of the trace of an implicitly given matrix AA whose information is only available through matrix-vector products. Such a method approximates the trace by an average of NN expressions of the form \ww^t (A\ww), with random vectors \ww drawn from an appropriate distribution. We prove, discuss and experiment with bounds on the number of realizations NN required in order to guarantee a probabilistic bound on the relative error of the trace estimation upon employing Rademacher (Hutchinson), Gaussian and uniform unit vector (with and without replacement) probability distributions. In total, one necessary bound and six sufficient bounds are proved, improving upon and extending similar estimates obtained in the seminal work of Avron and Toledo (2011) in several dimensions. We first improve their bound on NN for the Hutchinson method, dropping a term that relates to rank(A)rank(A) and making the bound comparable with that for the Gaussian estimator. We further prove new sufficient bounds for the Hutchinson, Gaussian and the unit vector estimators, as well as a necessary bound for the Gaussian estimator, which depend more specifically on properties of the matrix AA. As such they may suggest for what type of matrices one distribution or another provides a particularly effective or relatively ineffective stochastic estimation method

    Schur properties of convolutions of gamma random variables

    Get PDF
    Sufficient conditions for comparing the convolutions of heterogeneous gamma random variables in terms of the usual stochastic order are established. Such comparisons are characterized by the Schur convexity properties of the cumulative distribution function of the convolutions. Some examples of the practical applications of our results are given

    Optimization Methods for Inverse Problems

    Full text link
    Optimization plays an important role in solving many inverse problems. Indeed, the task of inversion often either involves or is fully cast as a solution of an optimization problem. In this light, the mere non-linear, non-convex, and large-scale nature of many of these inversions gives rise to some very challenging optimization problems. The inverse problem community has long been developing various techniques for solving such optimization tasks. However, other, seemingly disjoint communities, such as that of machine learning, have developed, almost in parallel, interesting alternative methods which might have stayed under the radar of the inverse problem community. In this survey, we aim to change that. In doing so, we first discuss current state-of-the-art optimization methods widely used in inverse problems. We then survey recent related advances in addressing similar challenges in problems faced by the machine learning community, and discuss their potential advantages for solving inverse problems. By highlighting the similarities among the optimization challenges faced by the inverse problem and the machine learning communities, we hope that this survey can serve as a bridge in bringing together these two communities and encourage cross fertilization of ideas.Comment: 13 page

    Invariance of Weight Distributions in Rectified MLPs

    Full text link
    An interesting approach to analyzing neural networks that has received renewed attention is to examine the equivalent kernel of the neural network. This is based on the fact that a fully connected feedforward network with one hidden layer, a certain weight distribution, an activation function, and an infinite number of neurons can be viewed as a mapping into a Hilbert space. We derive the equivalent kernels of MLPs with ReLU or Leaky ReLU activations for all rotationally-invariant weight distributions, generalizing a previous result that required Gaussian weight distributions. Additionally, the Central Limit Theorem is used to show that for certain activation functions, kernels corresponding to layers with weight distributions having 00 mean and finite absolute third moment are asymptotically universal, and are well approximated by the kernel corresponding to layers with spherical Gaussian weights. In deep networks, as depth increases the equivalent kernel approaches a pathological fixed point, which can be used to argue why training randomly initialized networks can be difficult. Our results also have implications for weight initialization.Comment: ICML 201

    Second-Order Optimization for Non-Convex Machine Learning: An Empirical Study

    Full text link
    While first-order optimization methods such as stochastic gradient descent (SGD) are popular in machine learning (ML), they come with well-known deficiencies, including relatively-slow convergence, sensitivity to the settings of hyper-parameters such as learning rate, stagnation at high training errors, and difficulty in escaping flat regions and saddle points. These issues are particularly acute in highly non-convex settings such as those arising in neural networks. Motivated by this, there has been recent interest in second-order methods that aim to alleviate these shortcomings by capturing curvature information. In this paper, we report detailed empirical evaluations of a class of Newton-type methods, namely sub-sampled variants of trust region (TR) and adaptive regularization with cubics (ARC) algorithms, for non-convex ML problems. In doing so, we demonstrate that these methods not only can be computationally competitive with hand-tuned SGD with momentum, obtaining comparable or better generalization performance, but also they are highly robust to hyper-parameter settings. Further, in contrast to SGD with momentum, we show that the manner in which these Newton-type methods employ curvature information allows them to seamlessly escape flat regions and saddle points.Comment: 21 pages, 11 figures. Restructure the paper and add experiment

    Assessing stochastic algorithms for large scale nonlinear least squares problems using extremal probabilities of linear combinations of gamma random variables

    Get PDF
    This article considers stochastic algorithms for efficiently solving a class of large scale non-linear least squares (NLS) problems which frequently arise in applications. We propose eight variants of a practical randomized algorithm where the uncertainties in the major stochastic steps are quantified. Such stochastic steps involve approximating the NLS objective function using Monte-Carlo methods, and this is equivalent to the estimation of the trace of corresponding symmetric positive semi-definite (SPSD) matrices. For the latter, we prove tight necessary and sufficient conditions on the sample size (which translates to cost) to satisfy the prescribed probabilistic accuracy. We show that these conditions are practically computable and yield small sample sizes. They are then incorporated in our stochastic algorithm to quantify the uncertainty in each randomized step. The bounds we use are applications of more general results regarding extremal tail probabilities of linear combinations of gamma distributed random variables. We derive and prove new results concerning the maximal and minimal tail probabilities of such linear combinations, which can be considered independently of the rest of this paper

    GIANT: Globally Improved Approximate Newton Method for Distributed Optimization

    Full text link
    For distributed computing environment, we consider the empirical risk minimization problem and propose a distributed and communication-efficient Newton-type optimization method. At every iteration, each worker locally finds an Approximate NewTon (ANT) direction, which is sent to the main driver. The main driver, then, averages all the ANT directions received from workers to form a {\it Globally Improved ANT} (GIANT) direction. GIANT is highly communication efficient and naturally exploits the trade-offs between local computations and global communications in that more local computations result in fewer overall rounds of communications. Theoretically, we show that GIANT enjoys an improved convergence rate as compared with first-order methods and existing distributed Newton-type methods. Further, and in sharp contrast with many existing distributed Newton-type methods, as well as popular first-order methods, a highly advantageous practical feature of GIANT is that it only involves one tuning parameter. We conduct large-scale experiments on a computer cluster and, empirically, demonstrate the superior performance of GIANT.Comment: Fixed some typos. Improved writin
    corecore